Differentiation Question 96

Question: If $ u=x^{2}{{\tan }^{-1}}\frac{y}{x}-y^{2}{{\tan }^{-1}}\frac{x}{y} $ , then $ \frac{{{\partial }^{2}}u}{\partial x\partial y}= $

[Tamilnadu (Engg.) 2002]

Options:

A) $ \frac{x^{2}+y^{2}}{x^{2}-y^{2}} $

B) $ \frac{x^{2}-y^{2}}{x^{2}+y^{2}} $

C) $ \frac{x^{2}+y^{2}}{x^{2}-y^{2}} $

D) $ -\frac{x^{2}y^{2}}{x^{2}+y^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ u=x^{2}{{\tan }^{-1}}\frac{y}{x}-y^{2}( \frac{\pi }{2}-{{\tan }^{-1}}\frac{y}{x} )=(x^{2}+y^{2}){{\tan }^{-1}}\frac{y}{x}-\frac{\pi }{2}y^{2} $

$ \therefore $ $ \frac{\partial u}{\partial y}=(x^{2}+y^{2})\frac{1}{1+\frac{y^{2}}{x^{2}}}.\frac{1}{x}+2y{{\tan }^{-1}}\frac{y}{x}-\pi y $

= $ x+2y{{\tan }^{-1}}\frac{y}{x}-\pi y $

$ \frac{{{\partial }^{2}}u}{\partial x\partial y}=1+2y\frac{1}{1+\frac{y^{2}}{x^{2}}}.\frac{-y}{x^{2}} $ = $ 1-\frac{2y^{2}}{x^{2}+y^{2}}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}} $ .