Differentiation Question 97

Question: If $ u^{2}={{(x-a)}^{2}}+{{(y-b)}^{2}}+{{(z-c)}^{2}} $ , then $ \sum \frac{{{\partial }^{2}}u}{\partial x^{2}}= $

[Tamilnadu (Engg.) 2002]

Options:

A) $ \frac{2}{u} $

B) $ \frac{3}{u} $

C) 0

D) $ \frac{1}{u} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ 2u\frac{\partial u}{\partial x}=2(x-a) $

Therefore $ u\frac{\partial u}{\partial x}=x-a $

Therefore $ u.\frac{{{\partial }^{2}}u}{\partial x^{2}}+{{( \frac{\partial u}{\partial x} )}^{2}}=1 $

Therefore $ u.\frac{{{\partial }^{2}}u}{\partial x^{2}}=1-{{( \frac{x-a}{u} )}^{2}} $

Therefore $ \frac{{{\partial }^{2}}u}{\partial x^{2}}=\frac{1}{u}-\frac{{{(x-a)}^{2}}}{u^{3}} $

Similarly, $ \frac{{{\partial }^{2}}u}{\partial y^{2}}=\frac{1}{u}-\frac{{{(y-b)}^{2}}}{u^{3}} $ , $ \frac{{{\partial }^{2}}u}{\partial z^{2}}=\frac{1}{u}-\frac{{{(z-b)}^{2}}}{u^{3}} $

$ \therefore $ $ \sum \frac{{{\partial }^{2}}u}{\partial x^{2}}=\frac{3}{u}-\frac{1}{u^{3}}[{{(x-a)}^{2}}+{{(y-b)}^{2}}+{{(z-c)}^{2}}] $

= $ \frac{3}{u}-\frac{1}{u^{3}}.(u^{2})=\frac{3}{u}-\frac{1}{u}=\frac{2}{u} $ .