Differentiation Question 98

Question: If $ z=\sec (y-ax)+\tan (y+ax), $ then $ \frac{{{\partial }^{2}}z}{\partial x^{2}}-a^{2}\frac{{{\partial }^{2}}z}{\partial y^{2}}= $

[EAMCET 2002]

Options:

A) z

B) 2z

C) 0

D) -z

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{\partial z}{\partial x}=-a\sec (y-ax)\tan (y-ax)+a{{\sec }^{2}}(y+ax) $

$ \frac{{{\partial }^{2}}z}{\partial x^{2}}=a^{2}{{\sec }^{3}}(y-ax)+a^{2}\sec (y-ax){{\tan }^{2}}(y-ax) $

$ +2a^{2}{{\sec }^{2}}(y+ax)\tan (y+ax) $

$ \frac{\partial z}{\partial y}=\sec (y-ax)\tan (y-ax)+{{\sec }^{2}}(y+ax) $

$ \frac{{{\partial }^{2}}z}{\partial y^{2}}={{\sec }^{3}}(y-ax)+\sec (y-ax){{\tan }^{2}}(y-ax) $

$ +2{{\sec }^{2}}(y+ax)\tan (y+ax) $

$ \therefore $ $ \frac{{{\partial }^{2}}z}{\partial x^{2}}-a^{2}\frac{{{\partial }^{2}}z}{\partial y^{2}}=0 $