Differentiation Question 99

Question: If $ z=\frac{y}{x}[ \sin \frac{x}{y}+\cos ( 1+\frac{y}{x} ) ] $ , then $ x\frac{\partial z}{\partial x}= $

[EAMCET 2002]

Options:

A) $ y\frac{\partial z}{\partial y} $

B) $ -y\frac{\partial z}{\partial y} $

C) $ 2y\frac{\partial z}{\partial y} $

D) $ 2y\frac{\partial z}{\partial x} $

Show Answer

Answer:

Correct Answer: B

Solution:

Since z is homogeneous in x, y of order -0…….
$ \therefore $ By Euler’s theorem $ x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}= $ 0

Therefore $ x\frac{\partial z}{\partial x}=-y\frac{\partial z}{\partial y} $