Equations And Inequalities Question 11

If a, b, c are distinct positive real numbers, then the expression $ ( b+c-a )( c+a-b )( a+b-c )-abc $ is

Options:

A) Positive (No change required)

B) Negative

C) Non-positive

D) Non-negative

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ (b+c-a)(c+a-b)(a+b-c)-abc $
    Without loss of generality, we can assume, $ a>b>c $
    Applying A.M., G.M. pairwise $ (b+c)>2\sqrt{bc} $ (i) $ (a+c)>2\sqrt{ac} $ (ii) $ (a+b)^2>4ac $ (iii) Multiplying equation (i), (ii), (iii), we get $ (a+b)(b+c)(c+a) \geq 8abc $ Let us put $ b+c=2p;c+a=2q;a+b=2r $

$ \Rightarrow a=-p+r+q;b=p-q+r;c=p+q-r $

$ \Rightarrow 2p.2q.2r\ge r\ge 8(q+r+p);(p+r-q);(p+q-r) $

$ \Rightarrow pqr\ge (q+r-p)(p+r-q)(p+r-q) $ Replacing p, q, r by a b c Without loss of generality, we obtain $ abc\ge (a+b-c)(b+c-a)(c+a-b) $

$ \Rightarrow $ The required expression is always positive



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें