Equations And Inequalities Question 15
Question: Set of values of x satisfying the inequality $ \frac{x^{2}+6x-7}{| x+4 |}<0 $ is/are
Options:
A) $ (-\infty ,-7) $
B) $ (-7,4) $
C) $ (-4,1) $
D) $ (1,\infty ) $
Show Answer
Answer:
Correct Answer: C
Solution:
- [c] $ \frac{x^{2}+6x-7}{| x+4 |}<0 $
$ \Rightarrow x^{2}+6x-7<0, $ provided $ x+4\ne 0 $ $ [\because | x+4 |>,0ifx\ne -,4] $
$ \Rightarrow (x+7)(x-1)<0,x\ne -4\Rightarrow -7<x<1, $ $ x\ne -4 $
$ \therefore x\in (-7,-4)\cup (-4,1) $