Equations And Inequalities Question 17

Question: For $ x\in R,\langle x \rangle $ is defined as follows: $ \langle x \rangle = \begin{matrix} x+1, \\ | x-4 |, \\ \end{matrix},\begin{matrix} 0\le x<2 \\ x\ge 2 \\ \end{matrix}\begin{matrix} {} \\ {} \\ \end{matrix} . $ Then the solution set of the equation $ {{\langle x \rangle }^{2}}+x=\langle x \rangle +x^{2} $ is

Options:

A) $ {-1,1} $

B) $ [2,\infty ) $

C) $ [0,2) $

D) $ {0,2} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Case 1: Let $ 0\le x<2, $ then $ \langle x \rangle =(x+1) $ and the equation becomes $ {{(x+1)}^{2}}+x=(x+1)+x^{2} $
    $ \Rightarrow 2x=0\Rightarrow x=0 $ Case 2: Let $ x\ge 2 $ then $ \langle x \rangle =| x-4 | $ and the equation becomes $ {{| x-4 |}^{2}}+x=| x-4 |+x^{2} $
    $ \Rightarrow x^{2}-8x+16+x=| x-4 |+x^{2} $
    $ \Rightarrow | x-4 |=16-7x $
    $ \therefore x-4=\pm (16-7x), $ provided $ 16-7x\ge 0 $
    $ \therefore x=\frac{5}{2}or2, $ But for $ x=\frac{5}{2},16-7x<0, $ hence rejected
    $ \therefore x=2. $ The solution set is $ {0,2} $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें