Equations And Inequalities Question 2

Question: The solution set of the inequality $ | x+2 |-| x-1 |<x-\frac{3}{2} $ is

Options:

A) $ ( \frac{9}{2},\infty ) $

B) $ ( -\infty ,\frac{3}{2} ) $

C) $ ( -2,-\frac{3}{2} ) $

D) $ ( -1,\frac{3}{2} ) $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] The inequality is $ | x+2 |-| x-2 |<x-\frac{3}{2}. $ Dividing the problem into three intervals: (i) if $ x<-2, $ then $ -(x+2)+(x-1)<x-\frac{3}{2} $

$ \Rightarrow x>-\frac{3}{2} $
But $ -\frac{3}{2}>-2, $ hence no common values

$ \Rightarrow x\in \phi $
(ii) If $ -2\le x<1, $ then $ (x+2)+(x-1)<x-\frac{3}{2} $

$ \Rightarrow x<-\frac{5}{2} $
But $ -\frac{5}{2}<-2, $ hence no common values

$ \Rightarrow x\in \phi $
(iii) If $ x\ge 1, $ then $ (x+2)-(x-1)<x-\frac{3}{2} $

$ \Rightarrow x>\frac{9}{2} $
$ \because \frac{9}{2}>1. $

$ \Rightarrow $ common solution is $ x>\frac{9}{2}\Rightarrow x\in ( \frac{9}{2},\infty ) $

$ \therefore $ Solution set is $ x\in ( \frac{9}{2},\infty ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें