Equations And Inequalities Question 3

Question: If $ \frac{3x-4}{2}\ge \frac{x+1}{4}-1, $ then $ x\in $

Options:

A) $ [1,\infty ) $

B) $ (1,\infty ) $

C) $ (-5,5) $

D) $ [-5,5] $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] We have $ \frac{3x-4}{2}\ge \frac{x+1}{4}-1 $ or $ \frac{3x-4}{2}\ge \frac{x-3}{4} $ or $ 2(3x-4)\ge (x-3),or6x-8\ge x-3 $ or $ 5x\ge 5 $ or $ x\ge 1 $ Thus, all real numbers which are greater than or equal to 1 is the solution set of the given inequality.
    $ \therefore x\in [1,\infty ). $