Equations And Inequalities Question 31

Question: The least integer a, for which $ 1+{\log_5}(x^{2}+1)\le log_5(ax^{2}+4x+a) $ is true for all $ x\in R $ is

Options:

A) 6

B) 7

C) 10

D) 1

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] For the validity of inequality $ ax^{2}+4x+a>0, $
    which is possible if a>0 and $ 16-4a^{2}<0 $
    $ \Rightarrow a>2 $ ?. (1) Further, the inequality can be rewritten as $ {\log_5}5+{\log_5}(x^{2}+1)\le log_5(ax^{2}+4x+a) $

$ \Rightarrow 5(x^{2}+1)\le ax^{2}+4x+a $

$ \Rightarrow (a-5)x^{2}+4x+(a-5)\ge 0. $
It holds if $ a-5>0 $ and $ 16-4{{(a-5)}^{2}}\le 0 $

$ \Rightarrow a>5 $ And $ a\le 3 $ or $ a\ge 7\Rightarrow a\ge 7 $ ? (2) Combining the results of (1) and (2) for common values, we get $ a\in [7,\infty ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें