Equations And Inequalities Question 35
Question: If $ {{(\sqrt{2})}^{x}}+{{(\sqrt{3})}^{x}}={{(\sqrt{13})}^{x/2}}, $ then the number of values of x is
Options:
A) 2
B) 4
C) 1
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
- [c]   $ {2^{x/2}}+{3^{x/2}}={{(\sqrt{13})}^{x/2}} $   
 $ \Rightarrow {{( \frac{2}{\sqrt{13}} )}^{x/2}}+{{( \frac{3}{\sqrt{13}} )}^{x/2}}=1 $ Which is of the form $ {{\left( \frac{2}{\sqrt{13}} \right)}^{x/2}}+{{\left( \frac{3}{\sqrt{13}} \right)}^{x/2}}=1. $ $ \therefore ,\frac{x}{2}=2. $
 BETA
  BETA 
             
             
           
           
           
          