Equations And Inequalities Question 37

Question: The number of real roots of the equation $ | 2-| 1-| x | | |=1 $ is

Options:

A) 1

B) 3

C) 5

D) 6

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ | 2-| 1-| x | | |=1\Rightarrow 2-| 1-| x | |=\pm 1 $
    $ \Rightarrow | 1-| x | |=1or3 $ If $ | | 1- |x |=1\Rightarrow 1-| x |=\pm 1\Rightarrow | x |=0or2 $
    $ \Rightarrow x=0or\pm 2 $ If $ | 1-| x | |=3\Rightarrow 1-| x |=\pm 3\Rightarrow | x |=-2or4 $
    $ \Rightarrow | x |=4\Rightarrow x=\pm 4 $ $ [\because | x |\ne -2] $
    $ \therefore $ Solution set is $ {-4,-2,0,2,4} $ , hence 5 real roots in all.