Equations And Inequalities Question 39

Question: The equation $ {\log_3}(3^{x}-8)=2-x $ has the solution

Options:

A) $ x=1 $

B) $ x=2 $

C) $ x=3 $

D) $ x=4 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ {\log_3}(3^{x}-8)=2-x\Rightarrow 3^{x}-8={3^{2-x}} $ where $ 3^{x}-8>0 $
    $ \Rightarrow 3^{x}-8=\frac{9}{3^{x}}\Rightarrow {{(3^{x})}^{2}}-8(3^{x})-9=0 $
    $ \Rightarrow (3^{x}+1)(3^{x}-9)=0\Rightarrow 3^{x}=9[\because ,3^{x}\ne -1] $
    $ \therefore x=2 $