Equations And Inequalities Question 42

Question: The number of real values of parameter k for which $ {{(log_{16}x)}^{2}}-{\log_{16}}x+{\log_{16}}k=0 $ will have exactly one solution is

Options:

A) 0

B) 2

C) 1

D) 4

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] The equation is $ {{(log_{16}x)}^{2}}-{\log_{16}}x+{\log_{16}}k=0 $ Clearly $ x>0 $ Solving the equation, we get $ {\log_{16}}x=\frac{1\pm \sqrt{1-4(log_{16}k)}}{2} $ For exactly one solution $ 1-4{\log_{16}}k=0 $
    $ \Rightarrow k^{4}=16\Rightarrow k=\pm 2 $ [Taking real values] Now $ {\log_{16}}k $ is defined if $ k>0\Rightarrow k=2 $