Equations And Inequalities Question 46

Question: If $ R\ge r>0 $ and $ d>0, $ then $ 0<\frac{d^{2}+R^{2}-r^{2}}{2dR}\le 1 $

Options:

A) Is satisfied if $ | d-R |\le r $

B) Is satisfied if $ | d-R |\le 2r $

C) Is satisfied if $ | d-R |\ge r $

D) Is not satisfied at all

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Given $ R\ge r>0 $ and $ d>0 $
    $ \Rightarrow 0<\frac{d^{2}+R^{2}-r^{2}}{2dR}\le 1 $
    $ \Rightarrow 0<(d+R-r)(d+R+r)\le 2dR; $ which is true iff $ (d^{2}+R^{2}-r^{2})\le 2dR, $ which is true iff $ d^{2}+R^{2}-2dR\le r^{2} $
    $ \Rightarrow {{(d-R)}^{2}}\le r^{2} $ $ | d-R |\le r, $ which is also $ -r\le (d-R)\le r $ $ | d-R |\le r, $ which is also $ -r\le (d-R)\le r $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें