Equations And Inequalities Question 47

Question: For positive real numbers a, b, c such that $ a+b+c=p, $ which one does not hold?

Options:

A) $ (p-a)(p-b)(p-c)\le \frac{8}{27}p^{3} $

B) $ (p-a)(p-b)(p-c)\ge 8abc $

C) $ \frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\le p $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Using $ A.M.\ge G.M. $ one can show that $ (b+c)(c+a)(a+b)\ge 8abc $

$ \Rightarrow ,(p-a)(p-b)(p-c)\ge 8abc $
Therefore, [b] holds. Also, $ \frac{(p-a)+(p-b)+(p-c)}{3}\ge {{[(p-a)(p-b)(p-c)]}^{1/3}} $
or $ \frac{3p-(a+b+c)}{3}\ge {{[(p-a)(p-b)(p-c)]}^{1/3}} $
or $ \frac{2p}{3}\ge {{[(p-a)(p-b)(p-c)]}^{1/3}} $
or $ (p-a)(p-b)(p-c)\le \frac{8p^{3}}{27} $
Therefore, [a] holds, again, $ \frac{1}{2}( \frac{bc}{a}+\frac{ca}{b} )\ge \sqrt{( \frac{bc}{a}\frac{ca}{b} )} $
And so on. Adding the inequalities, we get $ \frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c=p $
Therefore, [c] does not hold.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें