Equations And Inequalities Question 47

Question: For positive real numbers a, b, c such that $ a+b+c=p, $ which one does not hold?

Options:

A) $ (p-a)(p-b)(p-c)\le \frac{8}{27}p^{3} $

B) $ (p-a)(p-b)(p-c)\ge 8abc $

C) $ \frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\le p $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Using $ A.M.\ge G.M. $ one can show that $ (b+c)(c+a)(a+b)\ge 8abc $

$ \Rightarrow ,(p-a)(p-b)(p-c)\ge 8abc $
Therefore, [b] holds. Also, $ \frac{(p-a)+(p-b)+(p-c)}{3}\ge {{[(p-a)(p-b)(p-c)]}^{1/3}} $
or $ \frac{3p-(a+b+c)}{3}\ge {{[(p-a)(p-b)(p-c)]}^{1/3}} $
or $ \frac{2p}{3}\ge {{[(p-a)(p-b)(p-c)]}^{1/3}} $
or $ (p-a)(p-b)(p-c)\le \frac{8p^{3}}{27} $
Therefore, [a] holds, again, $ \frac{1}{2}( \frac{bc}{a}+\frac{ca}{b} )\ge \sqrt{( \frac{bc}{a}\frac{ca}{b} )} $
And so on. Adding the inequalities, we get $ \frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c=p $
Therefore, [c] does not hold.