Equations And Inequalities Question 8

Question: The number of integral roots of the equation $ | x-1 |+| x+2 |-| x-3 |=4 $ is

Options:

A) 0

B) 1

C) 2

D) 4

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ | x-1 |+| x+2 |-| x-3 |=4, $ has three absolute value expressions, thus we divide the problem into four intervals: (i) If $ x<-2 $ then $ -(x-1)-(x+2)+(x-3)=4\Rightarrow x=-8 $
    (ii) If $ -2\le x<1, $ then $ -(x-1)+(x+2)+(x-3)=4 $

$ \Rightarrow x=4\notin [-2,,1), $ hence rejected (iii) If $ 1\le x<3, $ then $ (x-1)+(x+2)+(x-3)=4\Rightarrow x=2 $
(iv) If $ x\ge 3, $ then $ (x-1)+(x+2)-(x-3)=4\Rightarrow x=0\notin [3,\infty ), $
Hence rejected

$ \therefore $ Solution set is $ {-8,2} $ and both are integers