Equations And Inequalities Question 8
Question: The number of integral roots of the equation $ | x-1 |+| x+2 |-| x-3 |=4 $ is
Options:
A) 0
B) 1
C) 2
D) 4
Show Answer
Answer:
Correct Answer: C
Solution:
- [c]   $ | x-1 |+| x+2 |-| x-3 |=4, $   has three absolute value expressions, thus we divide the problem into four intervals:
(i) If   $ x<-2 $    then
$ -(x-1)-(x+2)+(x-3)=4\Rightarrow x=-8 $
 (ii) If $ -2\le x<1, $ then $ -(x-1)+(x+2)+(x-3)=4 $
$ \Rightarrow x=4\notin [-2,,1), $    hence rejected
(iii) If   $ 1\le x<3, $    then
$ (x-1)+(x+2)+(x-3)=4\Rightarrow x=2 $
(iv) If   $ x\ge 3, $    then
$ (x-1)+(x+2)-(x-3)=4\Rightarrow x=0\notin [3,\infty ), $
Hence rejected
$ \therefore $ Solution set is $ {-8,2} $ and both are integers
 BETA
  BETA 
             
             
           
           
           
          