Functions Question 118
Question: $ \underset{x\to a}{\mathop{\lim }},\frac{\cos x-\cos a}{\cos x-\cot a}= $
[BIT Ranchi 1987]
Options:
A) $ \frac{1}{2}{{\sin }^{3}}a $
B) $ \frac{1}{2}cose{c^{2}}a $
C) $ {{\sin }^{3}}a $
D) $ \cos{c^{3}}a $
Show Answer
Answer:
Correct Answer: C
Solution:
$ \underset{x\to a}{\mathop{\lim }}\frac{\cos x-\cos a}{\cot x-\cot a}=\underset{x\to a}{\mathop{\lim }}( \frac{\sin a}{\cos {{e}^{2}}a} )=\underset{x\to a}{\mathop{\lim }},{{\sin }^{3}}x={{\sin }^{3}}a $
 BETA
  BETA 
             
             
           
           
           
          