Functions Question 12

Question: $ \underset{h\to 0}{\mathop{\lim }}\frac{\sqrt{x+h}-\sqrt{x}}{h}= $

[Roorkee 1983]

Options:

A) $ \frac{1}{2\sqrt{x}} $

B) $ \frac{1}{\sqrt{x}} $

C) $ 2\sqrt{x} $

D) $ \sqrt{x} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \underset{h\to 0}{\mathop{\lim }}\frac{\sqrt{x+h}-\sqrt{x}}{h}=\underset{h\to 0}{\mathop{\lim }}\frac{{{(\sqrt{x+h})}^{2}}-{{(\sqrt{x})}^{2}}}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{2\sqrt{x}} $ . Aliter : Apply L-Hospital rule, $ \underset{h\to 0}{\mathop{\lim }}\frac{\sqrt{x+h}-\sqrt{x}}{h}=\underset{h\to 0}{\mathop{\lim }}\frac{1}{2\sqrt{x+h}}=\frac{1}{2\sqrt{x}} $ .