Functions Question 14

Question: $ \underset{x\to 0}{\mathop{\lim }}\frac{2^{x}-1}{{{(1+x)}^{1/2}}-1}= $

[IIT 1983; Karnataka CET 1999]

Options:

A) $ \log 2 $

B) $ \log 4 $

C) $ \log \sqrt{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to 0}{\mathop{\lim }}\frac{2^{x}-1}{{{(1+x)}^{1/2}}-1}=\underset{x\to 0}{\mathop{\lim }}\frac{2^{x}\log 2}{\tfrac{1}{2}{{(1+x)}^{-1/2}}} $ $ { \because \underset{x\to a}{\mathop{\lim }}\frac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\frac{{f}’(x)}{{g}’(x)} } $ $ =2\log 2=\log 4. $