Functions Question 142
Question: Let $
[x] $ denotes the greatest integer less than or equal to x. If $ f(x)=[x\sin \pi x] $ , then $ f(x) $ is [IIT 1986]
Options:
A) Continuous at $ x=0 $
B) Continuous in $ (-1, 0) $
C) Differentiable at (1,1)
D) All of the above
Show Answer
Answer:
Correct Answer: D
Solution:
Here, when $ -1\le x\le 1,0\le x\sin \pi x\le1 $ $ \Rightarrow f(x)=[x,\sin \pi x]=0 $ for $ -1\le x\le 1,, $ i.e., $ f(x) $ is not a constant function but equals zero for all $ x \in [-1,1]. $ $ \Rightarrow f(x) $ is differentiable in $ (-1,1) $ .
 BETA
  BETA 
             
             
           
           
           
          