Functions Question 142

Question: Let $

[x] $ denotes the greatest integer less than or equal to x. If $ f(x)=[x\sin \pi x] $ , then $ f(x) $ is [IIT 1986]

Options:

A) Continuous at $ x=0 $

B) Continuous in $ (-1, 0) $

C) Differentiable at (1,1)

D) All of the above

Show Answer

Answer:

Correct Answer: D

Solution:

Here, when $ -1\le x\le 1,0\le x\sin \pi x\le1 $ $ \Rightarrow f(x)=[x,\sin \pi x]=0 $ for $ -1\le x\le 1,, $ i.e., $ f(x) $ is not a constant function but equals zero for all $ x \in [-1,1]. $ $ \Rightarrow f(x) $ is differentiable in $ (-1,1) $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index