Functions Question 143

Question: $ \underset{x\to 0}{\mathop{\lim }},\frac{\sqrt{\frac{1}{2}(1-\cos 2x)}}{x}= $

[IIT 1991; AIEEE 2002; RPET 2001, 02]

Options:

A) 1

B) ?1

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to 0}{\mathop{\lim }}\frac{\sqrt{\tfrac{1}{2}(1-\cos 2x)}}{x}=\underset{x\to 0}{\mathop{\lim }}\frac{|\sin x|}{x} $ So, $ \underset{x\to 0+}{\mathop{\lim }}\frac{|,\sin x,|}{x}=1 $ and $ \underset{x\to 0-}{\mathop{\lim }}\frac{|,\sin x,|}{x}=-1 $ Hence limit does not exist.