Functions Question 146

Question: If $ f(x)= \begin{cases} & \frac{5}{2}-x,,,when,x<2 \\ & ,1,,\text{when }x=2 \\ & x-\frac{3}{2},when,x>2 \\ \end{cases} . $ , then

Options:

A) $ f(x) $ is continuous at $ x=2 $

B) $ f(x) $ is discontinuous at $ x=2 $

C) $ \underset{x\to 2}{\mathop{\lim }},f(x)=1 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to 2-}{\mathop{\lim }},f(x)=\frac{1}{2} $ and $ \underset{x\to 2+}{\mathop{\lim }},f(x)=\frac{1}{2} $ and $ f(2)=1. $