Functions Question 146
Question: If $ f(x)= \begin{cases} & \frac{5}{2}-x,,,when,x<2 \\ & ,1,,\text{when }x=2 \\ & x-\frac{3}{2},when,x>2 \\ \end{cases} . $ , then
Options:
A) $ f(x) $ is continuous at $ x=2 $
B) $ f(x) $ is discontinuous at $ x=2 $
C) $ \underset{x\to 2}{\mathop{\lim }},f(x)=1 $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
$ \underset{x\to 2-}{\mathop{\lim }},f(x)=\frac{1}{2} $ and $ \underset{x\to 2+}{\mathop{\lim }},f(x)=\frac{1}{2} $ and $ f(2)=1. $