Functions Question 149

Question: $ \underset{x\to \infty }{\mathop{\lim }},{{( \frac{x+2}{x+1} )}^{x+3}} $ is

[MNR 1994]

Options:

A) $ 1 $

B) $ e $

C) $ e^{2} $

D) $ e^{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ A=\underset{x\to \infty }{\mathop{\lim }}{{( \frac{x+2}{x+1} )}^{x+3}} $ $ =\underset{x\to \infty }{\mathop{\lim }}{{( 1+\frac{1}{x+1} )}^{x+3}} $ $ =\underset{x\to \infty }{\mathop{\lim }}{{[ {{( 1+\frac{1}{x+1} )}^{x+1}} ]}^{\frac{,(x+3)}{(x+1)}}}=e $ $ { \because \underset{x\to \infty }{\mathop{\lim }}{{( 1+\frac{1}{x+1} )}^{x+1}}=e . $ and $ \underset{x\to \infty }{\mathop{\lim }},\frac{,(x+3)}{(x+1)}=. \underset{x\to \infty }{\mathop{\lim }},\frac{,{ 1+(3/x) }}{{ 1+(1/x) }}=1 } $ .