Functions Question 153
Question: $ \underset{x\to \infty }{\mathop{\lim }},(\sqrt{x^{2}+1}-x) $ is equal to
[RPET 1995]
Options:
A) 1
B) ?1
C) 0
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
On rationalising, we get $ \underset{x\to \infty }{\mathop{\lim }}\frac{x^{2}+1-x^{2}}{\sqrt{x^{2}+1}+x}=\underset{x\to \infty }{\mathop{\lim }}\frac{1}{\sqrt{x^{2}+1}+x}=0. $