Functions Question 153

Question: $ \underset{x\to \infty }{\mathop{\lim }},(\sqrt{x^{2}+1}-x) $ is equal to

[RPET 1995]

Options:

A) 1

B) ?1

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

On rationalising, we get $ \underset{x\to \infty }{\mathop{\lim }}\frac{x^{2}+1-x^{2}}{\sqrt{x^{2}+1}+x}=\underset{x\to \infty }{\mathop{\lim }}\frac{1}{\sqrt{x^{2}+1}+x}=0. $