Functions Question 155

Question: The function defined by $ f(x)= \begin{cases} & |x-3|,;x\ge 1 \\ & \frac{1}{4}x^{2}-\frac{3}{2}x+\frac{13}{4};,x<1 \\ \end{cases} . $ is

[IIT 1988]

Options:

A) Continuous at $ x=1 $

B) Continuous at $ x=3 $

C) Differentiable at $ x=1 $

D) All the above

Show Answer

Answer:

Correct Answer: D

Solution:

Since $ |x-3|,=x-3, $ if $ x\ge 3 $ $ =-x+3, $ if $ x<3 $
$ \therefore $ The given function can be defined as $ f(x)= \begin{cases} \frac{1}{4}x^{2}-\frac{3}{2}x+\frac{13}{4}, & x<1 \\ 3-x, & 1\le x<3 \\ x-3, & x\ge 3, \\ \end{cases} . $ Now proceed to check the continuity and differentiability at $ x=1. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें