Functions Question 155
Question: The function defined by $ f(x)= \begin{cases} & |x-3|,;x\ge 1 \\ & \frac{1}{4}x^{2}-\frac{3}{2}x+\frac{13}{4};,x<1 \\ \end{cases} . $ is
[IIT 1988]
Options:
A) Continuous at $ x=1 $
B) Continuous at $ x=3 $
C) Differentiable at $ x=1 $
D) All the above
Show Answer
Answer:
Correct Answer: D
Solution:
Since   $ |x-3|,=x-3, $  if  $ x\ge 3 $  $ =-x+3, $  if  $ x<3 $                   
$ \therefore  $  The given function can be defined as                     $ f(x)= \begin{cases}    \frac{1}{4}x^{2}-\frac{3}{2}x+\frac{13}{4}, & x<1  \\    3-x, & 1\le x<3  \\    x-3, & x\ge 3,  \\ \end{cases}  . $             Now proceed to check the continuity and differentiability at  $ x=1. $
 BETA
  BETA 
             
             
           
           
           
          