Functions Question 158

Question: If $ a,\ b,\ c,\ d $ are positive, then $ \underset{x\to \infty }{\mathop{\lim }},{{( 1+\frac{1}{a+bx} )}^{c+dx}}= $

[EAMCET 1992]

Options:

A) $ {e^{d/b}} $

B) $ {e^{c/a}} $

C) $ {e^{(c+d)/(a+b)}} $

D) $ e $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \underset{x\to \infty }{\mathop{\lim }}{{( 1+\frac{1}{a+bx} )}^{c+dx}}=\underset{x\to \infty }{\mathop{\lim }}{{{ {{( 1+\frac{1}{a+bx} )}^{a+bx}} }}^{\frac{c+dx}{a+bx}}}={e^{d/b}} $ $ { \because \underset{x\to \infty }{\mathop{\lim }}{{( 1+\frac{1}{a+bx} )}^{a+bx}}=e . $ and $ . \underset{x\to \infty }{\mathop{\lim }},\frac{c+dx}{a+bx}=\frac{d}{b} } $ .