Functions Question 16

Question: The value of $ \underset{x\to \frac{\pi }{2}}{\mathop{\lim }},\frac{\int_{\pi /2}^{x}{t,dt}}{\sin (2x-\pi )} $ is

[MP PET 1998]

Options:

A) $ \infty $

B) $ \frac{\pi }{2} $

C) $ \frac{\pi }{4} $

D) $ \frac{\pi }{8} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=\underset{x\to \pi /2}{\mathop{\lim }},\frac{\int_{\pi /2}^{x}{t,.,dt}}{\sin ,(2x-\pi )}\Rightarrow y=\underset{x\to \pi /2}{\mathop{\lim }},\frac{[ \frac{t^{2}}{2} ]_{\pi /2}^{x}}{\sin ,(2x-\pi )} $
$ y=\underset{x\to \pi /2}{\mathop{\lim }},\frac{( \frac{x^{2}}{2}-\frac{{{\pi }^{2}}}{8} )}{\sin ,(2x-\pi )}\Rightarrow y=\underset{x\to \pi /2}{\mathop{\lim }},\frac{1}{8}\frac{(4x^{2}-{{\pi }^{2}})}{\sin ,(2x-\pi )} $
$ y=\underset{x\to \pi /2}{\mathop{\lim }},\frac{1}{8}\frac{(2x-\pi )(2x+\pi )}{\sin ,(2x-\pi )} $
$ y=\frac{1}{8}\frac{\underset{x\to \pi /2}{\mathop{\lim }}(2x+\pi )}{\underset{x\to \pi /2}{\mathop{\lim }},\frac{\sin ,(2x-\pi )}{,(2x-\pi )}} $ ,
$ ( \because ,\underset{\theta \to 0}{\mathop{\lim }},\frac{\theta }{\sin \theta }=1 ) $
$ y=\frac{1}{8}\times 2\pi =\frac{\pi }{4} $ .