Functions Question 164
The period of $ f(x)=x^2-
[x] $ , if it is periodic, is [AMU 2000]
Options:
A) $ f(x) $ is not periodic
B) $ \frac{1}{2} $
1
2
Show Answer
Answer:
Correct Answer: C
Solution:
Let  $ f(x) $  be periodic with period T.                    Then,  $ f(x+T)=f(x) $  for all  $ x\in R $          
Þ  $ x+T-[x+T]=x-[x] $ , for all  $ x\in R $          
Þ  $ x+T-x=[x+T]-[x] $          
Þ  $ \lfloor x+T \rfloor - \lfloor x \rfloor = T $  for all  $ x\in \mathbb{R} $
Þ  $ =\underset{x\to 0}{\mathop{\lim }}\frac{{e^{\alpha x}}-1}{x}-\underset{x\to 0}{\mathop{\lim }}\frac{{e^{\beta x}}-1}{x} $             The smallest value of T satisfying             $ f(x+T)=f(x) $  for all  $ x\in R $  is 1.                    Hence  $ f(x)=x-\lfloor x \rfloor $  has period 1.
 BETA
  BETA 
             
             
           
           
           
          