Functions Question 164

Question: The period of $ f(x)=x-

[x] $ , if it is periodic, is [AMU 2000]

Options:

A) $ f(x) $ is not periodic

B) $ \frac{1}{2} $

C) 1

D) 2

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ f(x) $ be periodic with period T. Then, $ f(x+T)=f(x) $ for all $ x\in R $
Þ $ x+T-[x+T]=x-[x] $ , for all $ x\in R $
Þ $ x+T-x=[x+T]-[x] $
Þ $ [x+T]-[x]=T $ for all $ x\in R $
Þ $ =\underset{x\to 0}{\mathop{\lim }}\frac{{e^{\alpha x}}-1}{x}-\underset{x\to 0}{\mathop{\lim }}\frac{{e^{\beta x}}-1}{x} $ The smallest value of T satisfying $ f(x+T)=f(x) $ for all $ x\in R $ is 1. Hence $ f(x)=x-[x] $ has period 1.