Functions Question 164

The period of $ f(x)=x^2-

[x] $ , if it is periodic, is [AMU 2000]

Options:

A) $ f(x) $ is not periodic

B) $ \frac{1}{2} $

1

2

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ f(x) $ be periodic with period T. Then, $ f(x+T)=f(x) $ for all $ x\in R $
Þ $ x+T-[x+T]=x-[x] $ , for all $ x\in R $
Þ $ x+T-x=[x+T]-[x] $
Þ $ \lfloor x+T \rfloor - \lfloor x \rfloor = T $ for all $ x\in \mathbb{R} $ Þ $ =\underset{x\to 0}{\mathop{\lim }}\frac{{e^{\alpha x}}-1}{x}-\underset{x\to 0}{\mathop{\lim }}\frac{{e^{\beta x}}-1}{x} $ The smallest value of T satisfying $ f(x+T)=f(x) $ for all $ x\in R $ is 1. Hence $ f(x)=x-\lfloor x \rfloor $ has period 1.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें