Functions Question 166

Question: If $ 0<x<y $ then $ \underset{n\to \infty }{\mathop{\lim }},{{(y^{n}+x^{n})}^{1/n}} $ is equal to

Options:

A) $ e $

B) $ x $

C) $ y $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

We have $ \underset{n\to \infty }{\mathop{\lim }}{{(x^{n}+y^{n})}^{1/n}}=y\underset{n\to \infty }{\mathop{\lim }}{{( 1+{{( \frac{x}{y} )}^{n}} )}^{1/n}} $ $ =y\underset{n\to \infty }{\mathop{\lim }},{{[ 1+{{( \frac{x}{y} )}^{n}} ]}^{{{( \frac{y}{x} )}^{n}}.\frac{1}{n}.{{( \frac{x}{y} )}^{n}}}} $ $ =y\underset{n\to \infty }{\mathop{\lim }},{{[ {{( 1+{{( \frac{x}{y} )}^{n}} )}^{{{( \frac{y}{x} )}^{n}}.}} ]}^{\frac{1}{n}.{{( \frac{x}{y} )}^{n}}}} $ $ =ye^{0}=y $ , $ [ \because \frac{x}{y}<1,\Rightarrow {{( \frac{x}{y} )}^{n}}\to 0asn\to \infty ] $ .