Functions Question 169
Question: If $ f(x)= \begin{cases} e^{x}+ax, & x<0 \\ b{{(x-1)}^{2}}, & x\ge 0 \\ \end{cases} . $ is differentiable at $ x=0, $ then $ (a,,b) $ is
[MP PET 2000]
Options:
A) $ (-3,,-1) $
B) $ (-3,1) $
C) $ (3,1) $
D) $ (3,,-1) $
Show Answer
Answer:
Correct Answer: B
Solution:
Given  $ f(x) $  is differentiable at  $ x=0 $ . Hence,  $ f(x) $  will be continuous at  $ x=0 $ .            \ $ \underset{x\to {0^{-}}}{\mathop{lim}},(e^{x}+ax)=\underset{x\to {0^{+}}}{\mathop{lim}},b{{(x-1)}^{2}} $          
Þ  $ e^{0}+a\times 0=b{{(0-1)}^{2}} $
Þ  $ b=1 $                            ?.. (i)            But  $ f(x) $  is differentiable at  $ x=0 $ , then             $ L{f}’(x)=R{f}’(x) $ 
Þ   $ \frac{d}{dx}(e^{x}+ax)=\frac{d}{dx}b{{(x-1)}^{2}} $          
Þ  $ e^{x}+a=2b(x-1) $             At  $ x=0, $   $ e^{0}+a=-2b $
Þ  $ a+1=-2b $
Þ  $ a=-3 $          
Þ  $ (a,b)=(-3,1) $ .
 BETA
  BETA 
             
             
           
           
           
          