Functions Question 171

Question: If $ f(x)=\sqrt{\frac{x-\sin x}{x+{{\cos }^{2}}x}} $ , then $ \underset{x\to \infty }{\mathop{\lim }},f(x) $ is

[DCE 2000]

Options:

A) 0

B) $ \infty $

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{x\to \infty }{\mathop{\lim }},f(x)=,\underset{x\to \infty }{\mathop{\lim }}\sqrt{\frac{x-\sin x}{x+{{\cos }^{2}}x}}=\underset{x\to \infty }{\mathop{\lim }},\sqrt{\frac{1-\frac{\sin x}{x}}{1+\frac{{{\cos }^{2}}x}{x}}} $ $ =\sqrt{\frac{1-0}{1+0}}=1 $ , $ ( \because ,\frac{\sin x}{x}\to 0,\frac{{{\cos }^{2}}x}{x},\to 0\text{as }x\to \infty ) $ .