Functions Question 18

Question: $ \underset{x\to 0}{\mathop{\lim }}\frac{{e^{\sin x}}-1}{x}= $

Options:

A) 1

B) e

C) 1/e

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \underset{x\to 0}{\mathop{\lim }}\frac{{e^{\sin x}}-1}{x}=\underset{x\to 0}{\mathop{\lim }}\frac{{e^{\sin x}}-1}{\sin x}\times \frac{\sin x}{x} $ $ =\underset{x\to 0}{\mathop{\lim }}\frac{{e^{\sin x}}-1}{\sin x}\times \underset{x\to 0}{\mathop{\lim }}\frac{\sin x}{x}=1\times 1=1 $ . Aliter : Apply L-Hospital?s rule, $ \underset{x\to 0}{\mathop{\lim }}\frac{{e^{\sin x}}-1}{x}=\underset{x\to 0}{\mathop{\lim }}\frac{\cos x,{e^{\sin x}}}{1}=1.,e^{0}=1. $