Functions Question 185

Question: The value of $ \underset{x\to a}{\mathop{\lim }},\frac{\log (x-a)}{\log (e^{x}-e^{a})} $ is

Options:

A) 1

B) ?1

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \underset{x\to a}{\mathop{lim}},\frac{\log ,(x-a)}{\log ,(e^{x}-e^{a})}=\underset{x\to a}{\mathop{lim}},\frac{e^{x}-e^{a}}{(x-a),e^{x}} $ , $ ( Form\frac{0}{0} ) $ $ =\underset{x\to a}{\mathop{\lim }},\frac{e^{x}}{{ (x-a),e^{x}+e^{x} }}=\frac{e^{a}}{e^{a}}=1. $