Functions Question 19

Question: If $ f(x)= \begin{cases} & x\frac{{e^{(1/x)}}-{e^{(-1/x)}}}{{e^{(1/x)}}+{e^{(-1/x)}}},,x\ne 0 \\ & ,0,,x=0 \\ \end{cases} . $ then which of the following is true

[Kurukshetra CEE 1998]

Options:

A) f is continuous and differentiable at every point

B) f is continuous at every point but is not differentiable

C) f is differentiable at every point

D) f is differentiable only at the origin

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(0+0)=\underset{h\to 0}{\mathop{\lim }},f(x)=\underset{h\to 0}{\mathop{\lim }},f(0+h) $ $ =\underset{h\to 0}{\mathop{\lim }},(0+h),\frac{{e^{1/0+h}}-{e^{-1/0+h}}}{{e^{1/0+h}}+{e^{-1/0+h}}} $ $ =\underset{h\to 0}{\mathop{\lim }},h\frac{{e^{1/h}}-{e^{-1/h}}}{{e^{1/h}}+{e^{-1/h}}} $ =0 and $ f(0-0)=\underset{h\to 0}{\mathop{\lim }},f(0-h)=\underset{h\to 0}{\mathop{\lim }},-h\frac{{e^{-1/h}}-{e^{1/h}}}{{e^{-1/h}}+{e^{1/h}}}=0 $ and $ f(0)=0 $ ;
$ \therefore ,f(0+0)=f(0-0)=f(0) $ Hence f is continuous at $ x=0. $ At remaining points $ f(x) $ is obviously continuous. Thus it is everywhere continuous. Again, $ L,{f}’(0)=\underset{h\to 0}{\mathop{\lim }},\frac{f(0-h)-f(0)}{-h} $ $ =\underset{h\to 0}{\mathop{\lim }}\frac{h,.,\frac{{e^{-1/h}}-{e^{1/h}}}{{e^{-1/h}}+{e^{1/h}}}-0}{-h}=-1 $ $ R,{f}’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{f,(0+h)-f,(0)}{h} $ $ =\underset{h\to 0}{\mathop{\lim }},\frac{h\frac{{e^{1/h}}-{e^{-1/h}}}{{e^{1/h}}+{e^{-1/h}}}}{h}=1 $ $ \because L{f}’(0)\ne R,{f}’(0) $
$ \therefore f $ is not differentiable at $ x=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें