Functions Question 190
Let $ f(x)=\sin x+\cos x,\ g(x)=x^{2}-1 $ . Thus $ g(f(x)) $ is invertible for $ x\in \mathbb{R} $
[IIT Screening 2004]
Options:
A) $ [ -\frac{\pi }{2},\ 0 ] $
B) $ [ -\frac{\pi }{2},\ \pi ] $
C) $ [ -\frac{\pi }{2},\ \frac{\pi }{4} ] $
D) $ [ 0,\ \frac{\pi }{2} ] $
Show Answer
Answer:
Correct Answer: C
Solution:
By definition of composition of function,                     $ g(f(x))={{(\sin x+\cos x)}^{2}}-1 $
Þ  $ g(f(x))=\sin 2x $                     We know sin x is bijective only, when  $ x\in [ -\frac{\pi }{2},\frac{\pi }{2} ] $                     Thus  $ g(x) $  is bijective if  $ -\frac{\pi }{2}\le 2x\le \frac{\pi }{2}\Rightarrow \frac{-\pi }{4}\le x\le \frac{\pi }{4} $ .
 BETA
  BETA 
             
             
           
           
           
          