Functions Question 195

Question: $ \underset{x\to \infty }{\mathop{\lim }},(\sqrt{x^{2}+8x+3}-\sqrt{x^{2}+4x+3})= $

[MP PET 1997]

Options:

A) 0

B) $ \infty $

C) 2

D) $ \frac{1}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

On rationalization $ \underset{x\to \infty }{\mathop{\lim }}\frac{4x}{(\sqrt{x^{2}+8x+3}+\sqrt{x^{2}+4x+3}} $ $ =\underset{x\to \infty }{\mathop{\lim }}\frac{4}{( \sqrt{1+\frac{8}{x}+\frac{3}{x^{2}}}+\sqrt{1+\frac{4}{x}+\frac{3}{x^{2}}} )}=2 $ .