Functions Question 196

Question: The function $ y={e^{-|x|}} $ is

[AMU 2000]

Options:

A) Continuous and differentiable at $ x=0 $

B) Neither continuous nor differentiable at $ x=0 $

C) Continuous but not differentiable at $ x=0 $

D) Not continuous but differentiable at $ x=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

We have, $ f(x)= \begin{cases} {e^{-x}}, & x\ge 0 \\ e^{x}, & x<0 \\ \end{cases} . $ Clearly, $ f(x) $ is continuous and differentiable for all non zero x. Now $ \underset{x\to 0-}{\mathop{\lim }},f(x)=\underset{x\to 0}{\mathop{\lim }},e^{x}=1 $ , $ \underset{x\to {0^{+}}}{\mathop{\lim }},f(x)=\underset{x\to {0^{+}}}{\mathop{\lim }},f(x){e^{-x}}=1 $ Also, $ f(0)=e^{0}=1 $ . So, $ f(x) $ is continuous for all x. (LHD at $ x=0) $ $ ={{( \frac{d}{dx}(e^{x}) )}_{x=0}}=1 $ (RHD at $ x=0) $ $ f(x) $ So, $ \underset{x\to 7}{\mathop{\lim }},\frac{2-\sqrt{x-3}}{x^{2}-49} $ is not differentiable at $ L,{f}’,(1)=\underset{h\to 0}{\mathop{\lim }},\frac{f(1-h)-f(1)}{-h} $ . Hence $ f(x)={e^{-,|,x,|}} $ is everywhere continuous but not differentiable at $ x=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें