Functions Question 198

Question: $ \underset{x\to 0}{\mathop{\lim }},\frac{\sqrt{1-x^{2}}-\sqrt{1+x^{2}}}{x^{2}} $ is equal to

[MP PET 1999]

Options:

A) 1

B) ?1

C) ?2

D) 0

Show Answer

Answer:

Correct Answer: B

Solution:

On rationalising, the given limit $ =\underset{x\to 0}{\mathop{\lim }}\frac{(1-x^{2}-1-x^{2})}{x^{2},(\sqrt{1-x^{2}}+\sqrt{1+x^{2})}} $ $ =\underset{x\to 0}{\mathop{\lim }},\frac{-2}{\sqrt{1-x^{2}}+\sqrt{1+x^{2}}}=\frac{-2}{1+1}=-1 $