Functions Question 199

Question: If $ f(x)= \begin{cases} & x,\ \ \text{if }x\text{ is rational } \\ & -x,\ \text{if }x\text{ is irrational} \\ \end{cases} ., $ then $ \underset{x\to 0}{\mathop{\lim }},f(x) $ is

[Kurukshetra CEE 1998; UPSEAT 2004]

Options:

A) Equal to 0

B) Equal to 1

C) Equal to ?1

D) Indeterminate

Show Answer

Answer:

Correct Answer: A

Solution:

$ \underset{x\to {0^{-}}}{\mathop{\lim }},f(x)=\underset{h\to 0}{\mathop{\lim }},f(0-h)=\underset{h\to 0}{\mathop{\lim }},f(0-h)=0 $ and $ \underset{x\to {0^{+}}}{\mathop{\lim }},f(x)=\underset{h\to 0}{\mathop{\lim }},f(0+h)=\underset{h\to 0}{\mathop{\lim }}-(0+h)=0 $
$ \therefore ,\underset{x\to 0}{\mathop{\lim }},f(x)=0 $ , $ ( \because \underset{x\to {0^{-}}}{\mathop{\lim }},f(x)=\underset{x\to {0^{+}}}{\mathop{\lim }},f(x) ) $ .