Functions Question 204

Question: $ \underset{x\to \infty }{\mathop{\lim }},{{

[ 1+\frac{1}{mx} ]}^{x}} $ equal to [Kurukshetra CEE 1998]

Options:

A) $ {e^{1/m}} $

B) $ {e^{-1/m}} $

C) $ e^{m} $

D) $ m^{e} $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ y=\underset{x\to ,\infty }{\mathop{\lim }}{{( 1+\frac{1}{mx} )}^{x}}=\underset{x\to ,\infty }{\mathop{\lim }}{{( 1+\frac{1}{mx} )}^{mx\cdot \frac{1}{m}}} $
$ \Rightarrow y={e^{1/m}},,( \because \underset{x\to ,\infty }{\mathop{\lim }}{{( 1+\frac{1}{x} )}^{x}}=e ) $ .