Functions Question 209

Question: A function $ f(x)= \begin{cases} 1+x, & x\le 2 \\ 5-x, & x>2 \\ \end{cases} ,$ is

[AMU 2001]

Options:

A) Not continuous at $ x=2 $

B) Differentiable at $ x=2 $

C) Continuous but not differentiable at $ x=2 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{h\to {0^{-}}}{\mathop{\lim }}1+(2-h)=3 $ , $ \underset{h\to {0^{+}}}{\mathop{\lim }}5-(2+h)=3 $ , $ f(2)=3 $ Hence, f is continuous at $ x=2 $

Now $ R{f}’(x)=\underset{h\to 0}{\mathop{\lim }}\frac{5-(2+h)-3}{h}=-1 $

$ L{f}’(x)=\underset{h\to 0}{\mathop{\lim }}\frac{1+(2-h)-3}{-h}=1 $ $ \because R{f}’(x)\ne L{f}’(x) $ ; f is not differentiable at $ x=2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें