Functions Question 209

Question: A function $ f(x)= \begin{cases} 1+x, & x\le 2 \\ 5-x, & x>2 \\ \end{cases} ,$ is

[AMU 2001]

Options:

A) Not continuous at $ x=2 $

B) Differentiable at $ x=2 $

C) Continuous but not differentiable at $ x=2 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{h\to {0^{-}}}{\mathop{\lim }}1+(2-h)=3 $ , $ \underset{h\to {0^{+}}}{\mathop{\lim }}5-(2+h)=3 $ , $ f(2)=3 $ Hence, f is continuous at $ x=2 $

Now $ R{f}’(x)=\underset{h\to 0}{\mathop{\lim }}\frac{5-(2+h)-3}{h}=-1 $

$ L{f}’(x)=\underset{h\to 0}{\mathop{\lim }}\frac{1+(2-h)-3}{-h}=1 $ $ \because R{f}’(x)\ne L{f}’(x) $ ; f is not differentiable at $ x=2 $ .