Functions Question 223

Question: If $ f(x)=\log \frac{1+x}{1-x} $ , then $ f(x) $ is

[Kerala (Engg.) 2002]

Options:

A) Even function

B) $ f(x_1)f(x_2)=f(x_1+x_2) $

C) $ \frac{f(x_1)}{f(x_2)}=f(x_1-x_2) $

D) Odd function

Show Answer

Answer:

Correct Answer: D

Solution:

Here, $ f(x)=\log ( \frac{1+x}{1-x} ) $ and $ f(-x)=\log ( \frac{1-x}{1+x} )=\log {{( \frac{1+x}{1-x} )}^{-1}} $ $ =-\log ( \frac{1+x}{1-x} )=-f(x) $
Þ $ f(x) $ is an odd function.