Functions Question 232

Question: The value of $ \underset{x\to 0}{\mathop{\lim }}\frac{(1-\cos 2x)\sin 5x}{x^{2}\sin 3x} $ is

[MP PET 2000; UPSEAT 2000; Karnataka CET 2002]

Options:

A) 10/3

B) 3/10

C) 6/5

D) 5/6

Show Answer

Answer:

Correct Answer: A

Solution:

$ \underset{x\to 0}{\mathop{lim}},\frac{(1-\cos 2x),\sin 5x}{x^{2}\sin 3x} $ $ =\underset{x\to 0}{\mathop{lim}},\frac{2{{\sin }^{2}}x,\sin 5x}{x^{2}\sin 3x} $ $ =\underset{x\to 0}{\mathop{lim}}( \frac{2{{\sin }^{2}}x}{x^{2}} )\frac{( \frac{\sin 5x}{x} )}{( \frac{\sin 3x}{x} )} $ $ =\underset{x\to 0}{\mathop{lim}},2,{{( \frac{\sin x}{x} )}^{2}}\times \frac{5\underset{x\to 0}{\mathop{lim}},( \frac{\sin 5x}{5x} )}{3\underset{x\to 0}{\mathop{lim}},( \frac{\sin 3x}{3x} )} $ $ =\frac{2\times 5}{3}=\frac{10}{3} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें