Functions Question 236
Question: If the function $ f(x)= \begin{cases} & 1+\sin \frac{\pi x}{2},,for,-\infty <x\le 1 \\ & ax+b,,for,1<x<3 \\ & 6\tan \frac{x\pi }{12},,for3\le x<6 \\ \end{cases} . $ is continuous in the interval $ (-\infty ,,6) $ , then the values of a and b are respectively
[MP PET 1998]
Options:
A) 0, 2
B) 1, 1
C) 2, 0
D) 2, 1
Show Answer
Answer:
Correct Answer: C
Solution:
Given function is continuous at all point in  $ (-,\infty ,6) $  and at  $ x=1,x=3 $  function is continuous.                    If function  $ f(x) $  is continuous at  $ x=1, $  then                     $ \underset{x\to {1^{-}}}{\mathop{\lim }}f(x)=\underset{x\to {1^{+}}}{\mathop{\lim }}f(x) $
$ \Rightarrow ,1+\sin \frac{\pi }{2}=a+b $                   
$ \therefore ,a+b=2 $                                                         …..(i)                    If at  $ x=3, $  function is continuous, then                     $ \underset{x\to {3^{-}}}{\mathop{\lim }}f(3)=\underset{x\to {3^{+}}}{\mathop{\lim }}f(x) $
$ \Rightarrow 3a+b=6\tan \frac{3\pi }{12} $                   
$ \therefore ,3a+b=6 $                                                       …..(ii)            From (i) and (ii),  $ a=2,b=0 $  .
 BETA
  BETA 
             
             
           
           
           
          