Functions Question 236

Question: If the function $ f(x)= \begin{cases} & 1+\sin \frac{\pi x}{2},,for,-\infty <x\le 1 \\ & ax+b,,for,1<x<3 \\ & 6\tan \frac{x\pi }{12},,for3\le x<6 \\ \end{cases} . $ is continuous in the interval $ (-\infty ,,6) $ , then the values of a and b are respectively

[MP PET 1998]

Options:

A) 0, 2

B) 1, 1

C) 2, 0

D) 2, 1

Show Answer

Answer:

Correct Answer: C

Solution:

Given function is continuous at all point in $ (-,\infty ,6) $ and at $ x=1,x=3 $ function is continuous. If function $ f(x) $ is continuous at $ x=1, $ then $ \underset{x\to {1^{-}}}{\mathop{\lim }}f(x)=\underset{x\to {1^{+}}}{\mathop{\lim }}f(x) $
$ \Rightarrow ,1+\sin \frac{\pi }{2}=a+b $
$ \therefore ,a+b=2 $ …..(i) If at $ x=3, $ function is continuous, then $ \underset{x\to {3^{-}}}{\mathop{\lim }}f(3)=\underset{x\to {3^{+}}}{\mathop{\lim }}f(x) $
$ \Rightarrow 3a+b=6\tan \frac{3\pi }{12} $
$ \therefore ,3a+b=6 $ …..(ii) From (i) and (ii), $ a=2,b=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें