Functions Question 237

Question: Let $ f(x),= \begin{cases} x, & when & x<1 \\ 2-x, & when & 1 \le x\ge 2 \\ −2+3x−x^2, & when & x\gt 2 \\ \end{cases}, $

then $ {f}(x)$ is :

[Karnataka CET 2002]

Options:

A) differentiable at x=1

B) differentiable at x=2

C) differentiable at x=1 and x=2

D) not differentiable at x=10

Show Answer

Answer:

Correct Answer: B

Solution:

Checking Differentiability at $ x = 1 $

  1. Left-hand derivative at $ x = 1 $: $ f’(1^-) = \lim_{{h \to 0^-}} \frac{{f(1 + h) - f(1)}}{h} = \lim_{{h \to 0^-}} \frac{{(1 + h) - 1}}{h} = \lim_{{h \to 0^-}} \frac{h}{h} = 1 $

  2. Right-hand derivative at $ x = 1 $: $ f’(1^+) = \lim_{{h \to 0^+}} \frac{{f(1 + h) - f(1)}}{h} = \lim_{{h \to 0^+}} \frac{{(2 - (1 + h)) - 1}}{h} = \lim_{{h \to 0^+}} \frac{{1 - h - 1}}{h} = \lim_{{h \to 0^+}} \frac{-h}{h} = -1 $

Since $ f’(1^-) \neq f’(1^+) $, $ f(x) $ is not differentiable at $ x = 1 $.

Checking Differentiability at $ x = 2 $

  1. Left-hand derivative at $ x = 2 $: $ f’(2^-) = \lim_{{h \to 0^-}} \frac{{f(2 + h) - f(2)}}{h} = \lim_{{h \to 0^-}} \frac{{(2 - (2 + h)) - 0}}{h} = \lim_{{h \to 0^-}} \frac{{-h}}{h} = -1 $

  2. Right-hand derivative at $ x = 2 $:

$ f’(2^+) = \lim_{{h \to 0^+}} \frac{{f(2 + h) - f(2)}}{h} = \lim_{{h \to 0^+}} \frac{{(-2 + 3(2 + h) - (2 + h)^2) - 0}}{h} $

$ = \lim_{{h \to 0^+}} \frac{{(-2 + 6 + 3h - 4 - 4h - h^2) - 0}}{h} = \lim_{{h \to 0^+}} \frac{{-h^2 - h}}{h} = -1 $

Since $ f’(2^-) = f’(2^+) $, $ f(x) $ is differentiable at $ x = 2 $.