Functions Question 237

Question: Let $ f(x),= \begin{cases} x, & when & x<1 \\ 2-x, & when & 1 \le x\ge 2 \\ −2+3x−x^2, & when & x\gt 2 \\ \end{cases}, $

then $ {f}(x)$ is :

[Karnataka CET 2002]

Options:

A) differentiable at x=1

B) differentiable at x=2

C) differentiable at x=1 and x=2

D) not differentiable at x=10

Show Answer

Answer:

Correct Answer: B

Solution:

Checking Differentiability at $ x = 1 $

  1. Left-hand derivative at $ x = 1 $: $ f’(1^-) = \lim_{{h \to 0^-}} \frac{{f(1 + h) - f(1)}}{h} = \lim_{{h \to 0^-}} \frac{{(1 + h) - 1}}{h} = \lim_{{h \to 0^-}} \frac{h}{h} = 1 $

  2. Right-hand derivative at $ x = 1 $: $ f’(1^+) = \lim_{{h \to 0^+}} \frac{{f(1 + h) - f(1)}}{h} = \lim_{{h \to 0^+}} \frac{{(2 - (1 + h)) - 1}}{h} = \lim_{{h \to 0^+}} \frac{{1 - h - 1}}{h} = \lim_{{h \to 0^+}} \frac{-h}{h} = -1 $

Since $ f’(1^-) \neq f’(1^+) $, $ f(x) $ is not differentiable at $ x = 1 $.

Checking Differentiability at $ x = 2 $

  1. Left-hand derivative at $ x = 2 $: $ f’(2^-) = \lim_{{h \to 0^-}} \frac{{f(2 + h) - f(2)}}{h} = \lim_{{h \to 0^-}} \frac{{(2 - (2 + h)) - 0}}{h} = \lim_{{h \to 0^-}} \frac{{-h}}{h} = -1 $

  2. Right-hand derivative at $ x = 2 $:

$ f’(2^+) = \lim_{{h \to 0^+}} \frac{{f(2 + h) - f(2)}}{h} = \lim_{{h \to 0^+}} \frac{{(-2 + 3(2 + h) - (2 + h)^2) - 0}}{h} $

$ = \lim_{{h \to 0^+}} \frac{{(-2 + 6 + 3h - 4 - 4h - h^2) - 0}}{h} = \lim_{{h \to 0^+}} \frac{{-h^2 - h}}{h} = -1 $

Since $ f’(2^-) = f’(2^+) $, $ f(x) $ is differentiable at $ x = 2 $.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें