Functions Question 242

Question: $ \underset{\alpha \to \beta }{\mathop{\lim }},

[ \frac{{{\sin }^{2}}\alpha -{{\sin }^{2}}\beta }{{{\alpha }^{2}}-{{\beta }^{2}}} ]= $ [MP PET 2001]

Options:

A) 0

B) 1

C) $ \frac{\sin \beta }{\beta } $

D) $ \frac{\sin 2\beta }{2\beta } $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{\alpha \to \beta }{\mathop{\lim }},\frac{{{\sin }^{2}}\alpha -{{\sin }^{2}}\beta }{{{\alpha }^{2}}-{{\beta }^{2}}} $ Applying L-Hospital?s rule, $ \underset{\alpha \to \beta }{\mathop{lim}},\frac{2\sin ,\alpha \cos \alpha }{2\alpha }=\underset{\alpha \to \beta }{\mathop{lim}},\frac{\sin 2\alpha }{2\alpha }=\frac{\sin 2\beta }{2\beta } $ .