Functions Question 244

Question: $ \underset{x\to 1}{\mathop{\lim }},\frac{1+\cos \pi ,x}{{{\tan }^{2}}\pi ,x} $ is equal to

[AMU 2001]

Options:

A) 0

B) 1/2

C) 1

D) 2

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to 1}{\mathop{\lim }},\frac{(1+\cos \pi x)}{{{\tan }^{2}}\pi x}=\underset{x\to 1}{\mathop{\lim }},\frac{-\pi \sin \pi x}{2\pi \tan \pi x{{\sec }^{2}}\pi x} $ [Using L-Hospital?s rule] $ =\underset{x\to 1}{\mathop{\lim }},\frac{-1}{2}{{\cos }^{3}}\pi ,x $ $ =\frac{1}{2} $ .