Functions Question 245

Question: $ \underset{m\to \infty }{\mathop{\lim }}{{( \cos \frac{x}{m} )}^{m}}= $

[AMU 2001]

Options:

A) 0

B) e

C) 1/e

D) 1

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{m\to \infty }{\mathop{\lim }},{{( \cos \frac{x}{m} )}^{m}}=\underset{m\to \infty }{\mathop{\lim }},{{[ 1+( \cos \frac{x}{m}-1 ) ]}^{m}} $ $ =\underset{m\to \infty }{\mathop{\lim }},{{[ 1-( -\cos \frac{x}{m}+1 ) ]}^{m}} $ $ =\underset{m\to \infty }{\mathop{\lim }},{{[ 1-2{{\sin }^{2}}\frac{x}{2m} ]}^{m}} $ $ ={e^{\underset{m\to \infty }{\mathop{\lim }},-( 2{{\sin }^{2}}\frac{x}{2m} ),m}} $ $ ={e^{\underset{m\to \infty }{\mathop{\lim }},-2{{( \frac{\sin \frac{x}{2m}}{x/2m} )}^{2}}( \frac{x^{2}}{4m^{2}} ),m}} $ $ ={e^{-2\underset{m\to \infty }{\mathop{\lim }},\frac{x^{2}}{4m}}}=e^{0}=1 $ .