Functions Question 248

Question: $ \underset{x\to \pi /2}{\mathop{\lim }},\frac{{a^{\cot x}}-{a^{\cos x}}}{\cot x-\cos x}= $

[Kerala (Engg.) 2001; J & K 2005]

Options:

A) $ \log a $

B) $ \log 2 $

C) a

D) log x

Show Answer

Answer:

Correct Answer: A

Solution:

$ \underset{x\to \pi /2}{\mathop{lim}}( \frac{{a^{\cot x}}-{a^{\cos x}}}{\cot x-\cos x} ) $ $ =\underset{x\to \pi /2}{\mathop{lim}},{a^{\cos x}}( \frac{{a^{\cot x-\cos x}}-1}{\cot x-\cos x} ) $ $ ={a^{\cos (\pi /2)}}\underset{x\to \pi /2}{\mathop{lim}},( \frac{{a^{\cot x-\cos x}}-1}{\cot x-\cos x} ) $ $ =1.\log a=\log a $ .